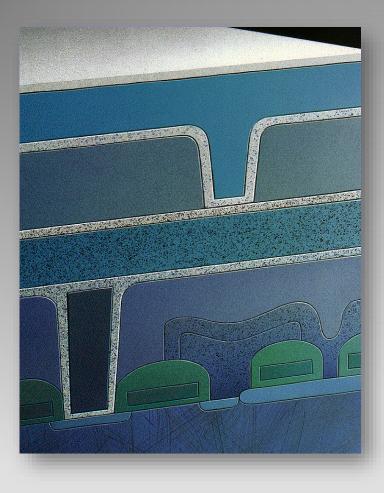
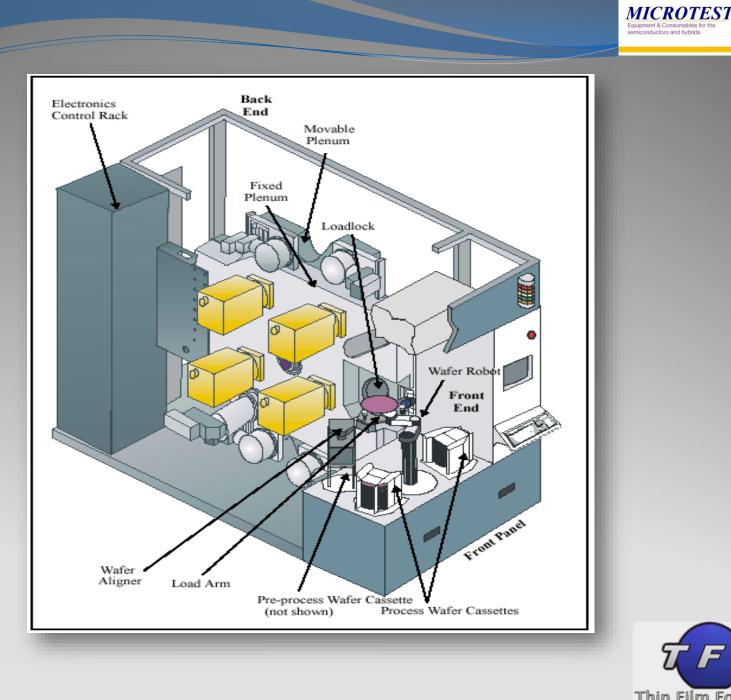
ECLIPSE SYSTEM OVERVIEW



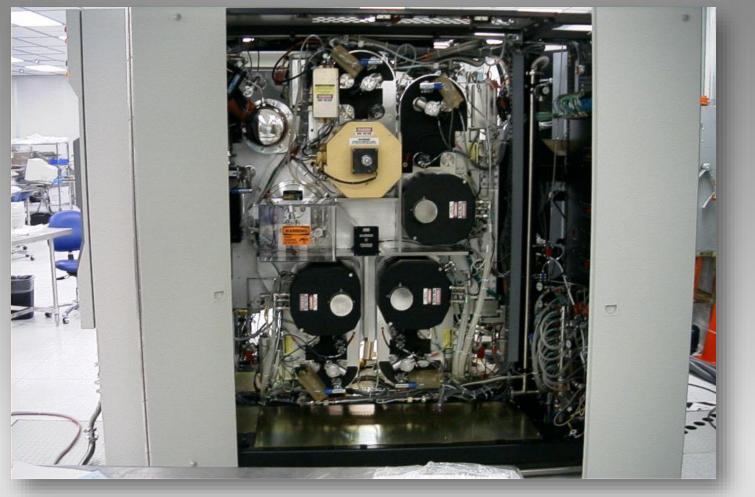
- MRC Technology
- System Overview
- Equipment Details
- Process Performance
- Summary

ECLIPSE PROCESS CAPABILITY

- Interconnects
 - Ti/TiN/Al/TiN
 - Hot Al for Via Fill
- Barriers
 - TiN and TiON
 - TiW and TiWN
- Silicides
 Ti, Co, Pt
- Resistors and Conductors
 - Ta, TaN, Ta/Au, TaAl
 - NiCr, SiCr, Si
- Backside and GaAs
 - Ni, NiV, Cr, Cu, Au, Ag, ...



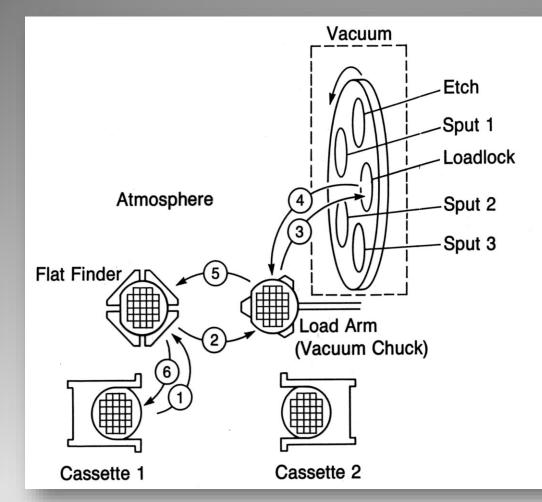
ECLIPSE KEY FEATURES


- High Throughput
 - 48 WPH (1um Al Deposition)
 - Serial Indexed Wafer Transport
- Superior Process Control
 - Vacuum Isolated Process Chambers
 - Rotating Magnet Cathodes
 - Process Specific Shield Designs
 - Reactive N₂ and O₂ Sputter Capability
 - GaAs and Backside Processing Available
- Reduced Maintenance
 - Quick Clamp Exchange
 - Rapid Target Change
 - On-Board CTI Fast Regen Cryo Pumps
 - Proven 150mm Platform ~900 in field

ECLIPSE STAR MOVEABLE PLENUM VIEW

Thin Film Equipment

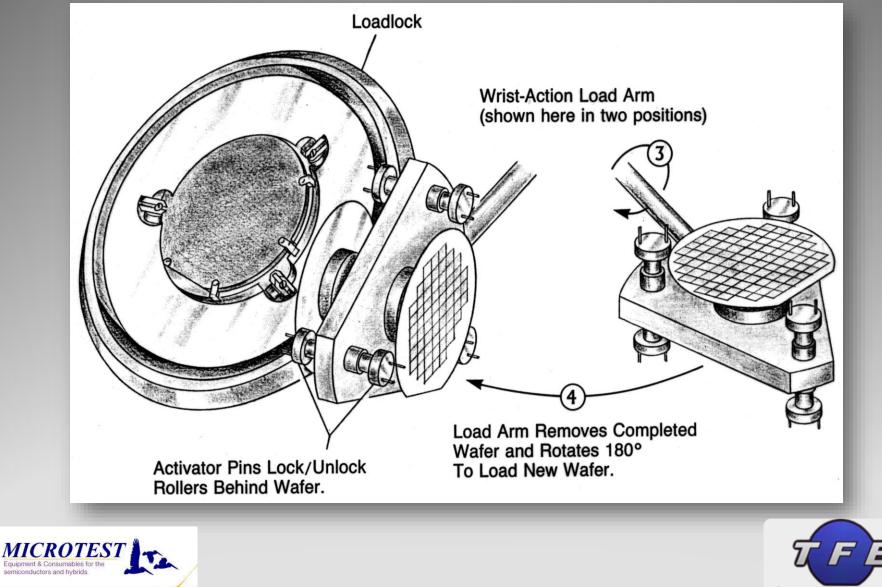
ECLIPSE – Wafer Handler

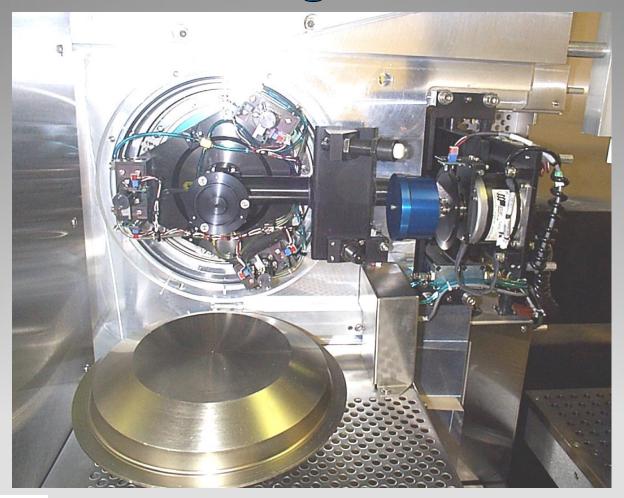


- Robotic Pick and Place Wafer Handler
- Dual Cassette Elevators
- Optical Flatfinder
- Centering Station
- Optional Preprocess Cassette

Wafer Hand-Offs

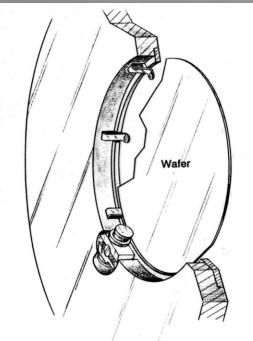
- Wafers transported horizontally in atmosphere
- Load arm converts wafer position to vertical before processing and back to horizontal after processing
- Single Orbitran[®] mechanism transfers wafers between cassette, flat finder, and load arm
- Wafer wafer integrity maintained in cassettes

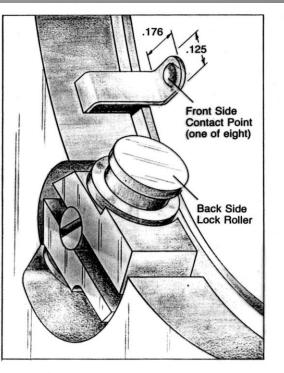

Wafer Loading 1 Cassette – Load Arm


Wafer Loading 2 Load Arm - Loadlock

Thin Film Equipment

Wafer Handling into Loadlock



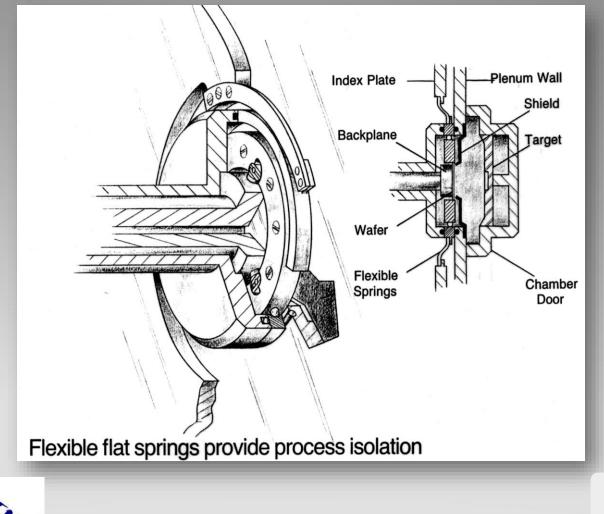


Wafer Loading 3 Wafer Holder

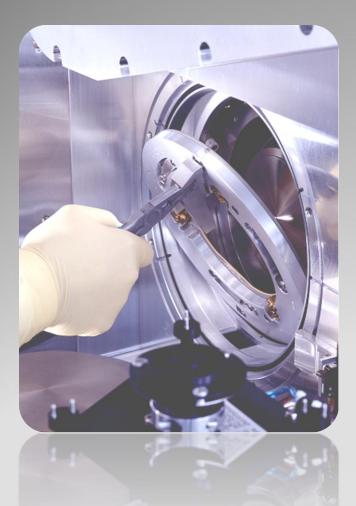
Backside View of Wafer in Load Lock

- Wafer held securely in wafer holder — vertical during all processing
- No wafer motion during all processing

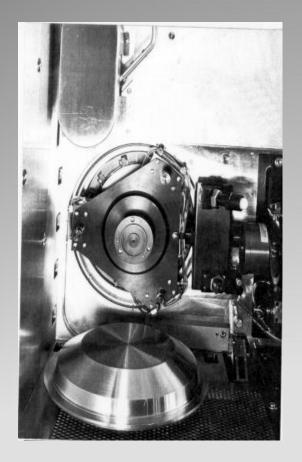
Wafer Holder Assembly


- Compliant tabs maintain consistent wafer contact pressure
- Wafer holder design reduces particulates during deposition
 - No moving parts in vacuum
 - Roller contacts backside of wafer over a distance of 0.045 in
 - No edge contact

Wafer Isolation 2 - Sealed

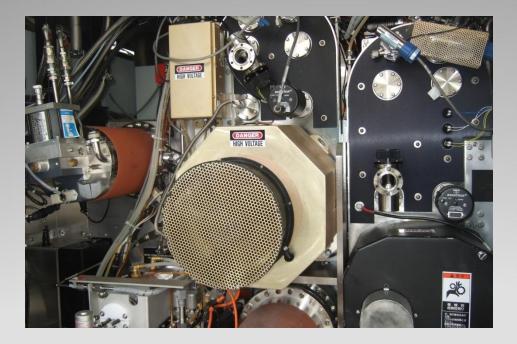


Quick Clamp Exchange


- Full circumference 1.5mm edge exclusion
- Standard fully ceramic latch assemblies (body & roller)
- Low particulate cam action latching
- Six self-aligning screws for easy maintenance
- Full system exchange in less than 30 min.
- Specially designed for the new round backplane (reduces secondary plasmas)

Vacuum Loadlock

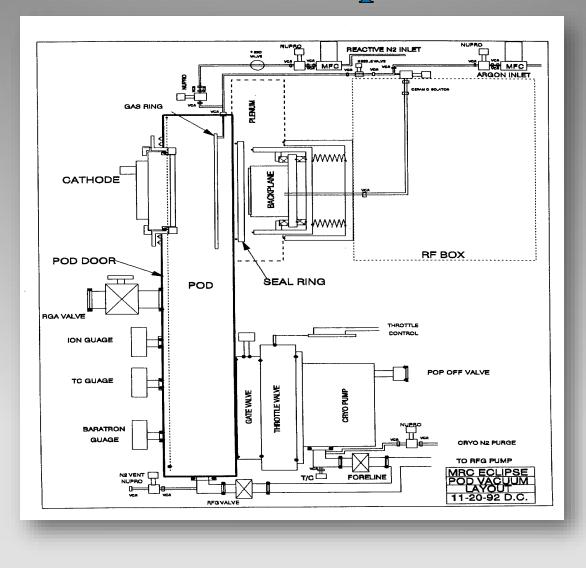
- Dedicated CTI-8 Cryo Pump
- Radial Slow Vent for Low Particle Generation
- Heated Frontplane up to 200C for Outgassing
- Dual Sided Loadarm For High Throughput
- Quick Clamp Exchange


ICP Soft Etch Module option

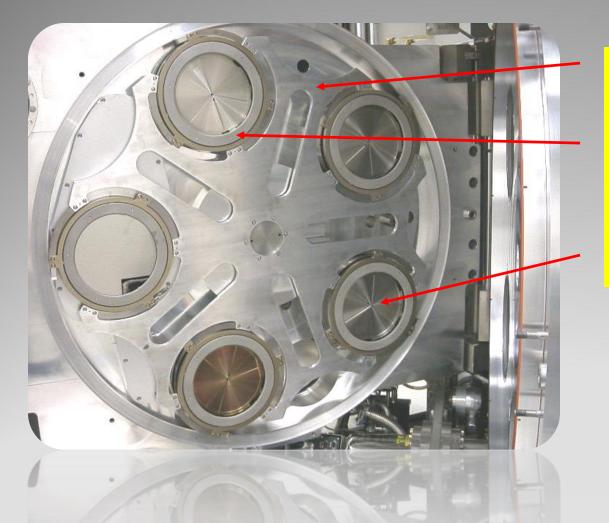
- Pre-clean sputter etch of native oxides
- Inductively Coupled Plasma (ICP)
 - Offers high density plasma with independently controlled wafer bias
 - The quartz process chamber has a special surface treatment to improve material adhesion
- Improved Yield
 - Low device damage
- Increased Throughput
 - High etch rate (100-600 Å/min)

Soft Etch

PVD Process Chamber

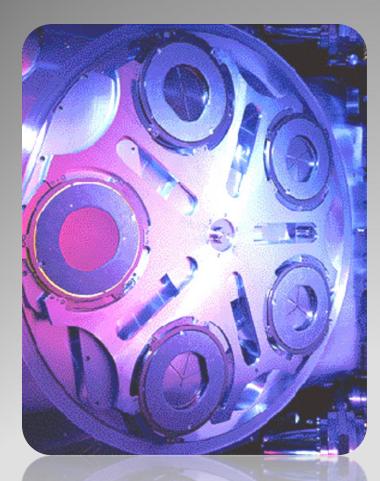


- Three Metal Process Capability
- Full Face Erosion Magnetron Technology
- Hard Etch std-Soft Etch option
 - RMX-10, SPA-10 Standard
 - RMX 12", SPA 12"- option
- Reactive N2 and O2 option
- **RF BIAS option**


Pod and Backplane

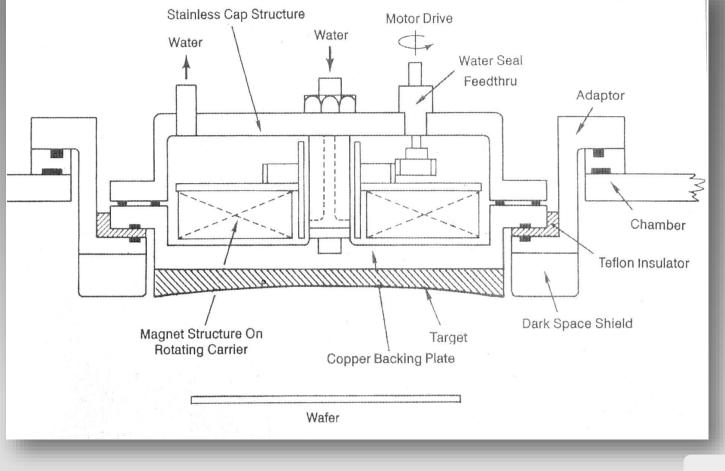
Thin Film Equipment

Wafer Transport Module

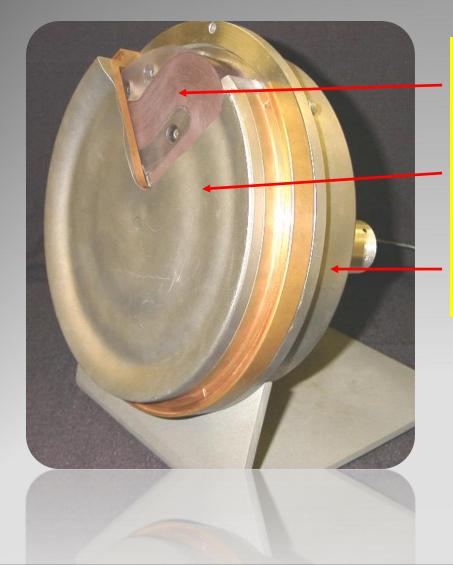

Index Wheel Wafer Holders, five places

Backplanes

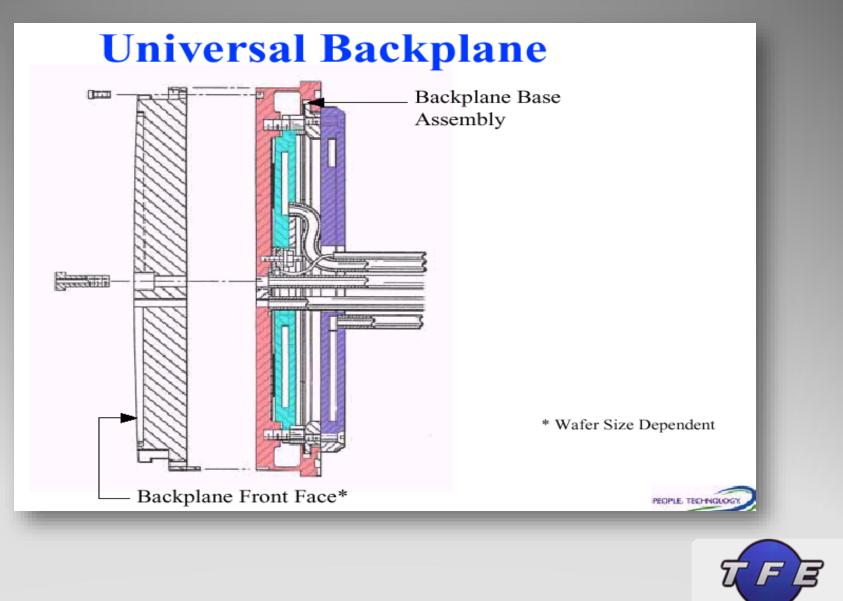
Wafer Transport Module

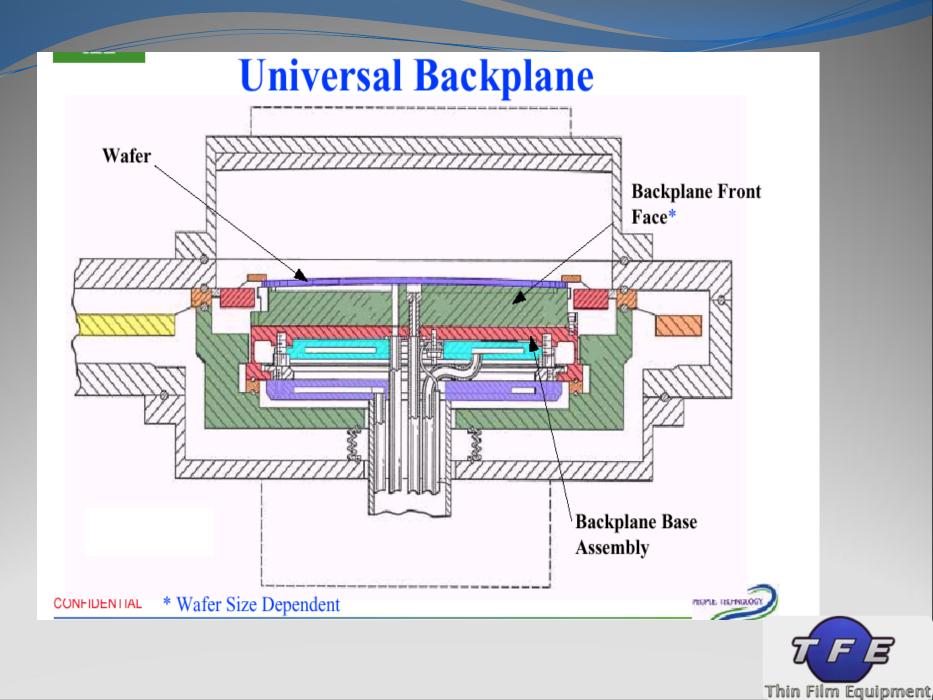


- High Speed Serial Indexed Wafer Transport
- Precision Index Wheel Positioning
- Full Face Clamp Ring Wafer Holders
- Wafers are Clamped once during Transport through all Chambers
- No Sputtering on the Backplanes or Backside of the Wafer


RMX Cathode Schematic

Cathode/Target Cut Away


- Rotating Magnet Assembly
- Target Assembly
- Cathode Housing

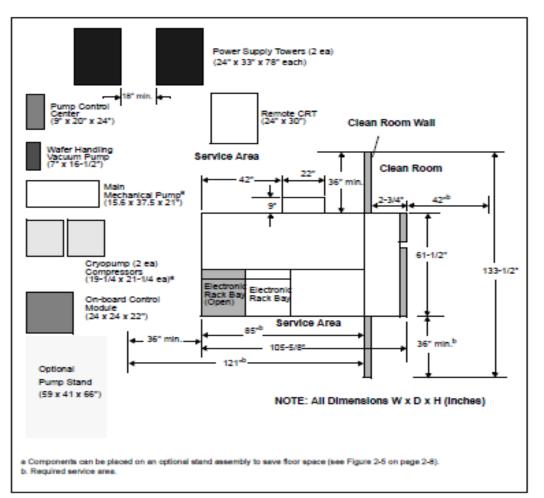

ECLIPSE Wafer Temperature

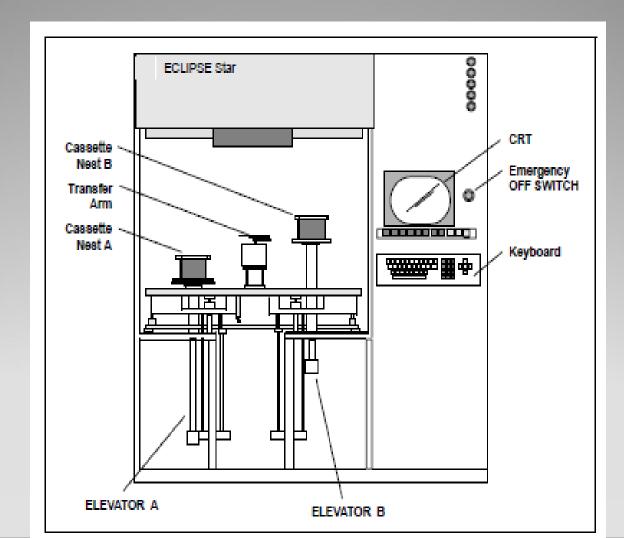
- Control is achieved by using backside gas
 - Heat source (bring wafer temp. up/down)
 - Heat sink (hold wafer temp. during dep.)
- Without control, deposition of 1 µm of Al
 - raises wafer temperature by 250 550 C
 - wafer is only inefficiently cooled by radiation
- Understanding of the mechanism is key for
 - successful process design on the Eclipse
 - successful process move from/to "other" equipment

Thin Film Equipment

CONTROL OF STRESS

	TO MAKE STRESS MORE	
VARY	COMPRESSIVE	TENSILE
Power/Rate	1	\downarrow
Argon Pressure	\downarrow	1
Substrate Temperature	\downarrow	↑
Film Thickness	1	\downarrow
Bias	↑	\downarrow




ECLIPSE Star™

Facilities Installation Manual

2.2 System Placement - Dimensional Footprints

The ECLIPSE Star system footprint is 61-1/2 inches wide by 105-5/8 inches deep by 88-11/ 16 inches high. (Also, 156 cm wide by 268 cm deep by 225 cm high.)

Cathode	Hard Etch	Soft Etch
Etch Rate (Å/min)	100< x <250	100< x <600
Etch Unif, WiW, % 1 sigma	<5.0	<5.0
Etch Unif, WtW, % 1 sigma	<2.5	<5.0
Particle Contribution		<0.10 p/cm2 >0.3 um
Process Conditions	Remove 350Å thermal oxide from 10000Å oxide wafer, 1000 volt, 50 sccm Ar, 300°C, throttled to 5.0 mtorr	Remove 350Å thermal oxide from 10000Å oxide wafer, 125 volts, 1000 watts, 50 sccm Ar, 300°C, throttled to .8 mtorr
Document / Version #	215-11-005- 001 / 9411	215-11-005- 002 / 9411

T			1	· · · · · · · · · · · · · · · · · · ·
Cathode	RMX-10 Ti	RMX-12 Ti	SPA-10 AI	SPA-12 AI
Deposition Rate (Å/sec)	>50	>50	>200	>200
Resistivity (uohm-cm)	<60	<60	3.1 ± 0.1 (Al1Si.5Cu)	3.1 ± 0.1 (Al1Si.5Cu)
Rs Uniformity, WiW, % 1 sigma	<2.5	<1.5	<2.5	<2.0
Rs Uniformity, WtW, % 1 sigma	<1.0	<1.0	<1.0	<1.0
Thickness Uniformity, WiW, % h-I	<5.0	<5.0	<5.0	<5.0
Thickness Uniformity, WtW, % h-I	<2.0	<2.0	<1.5	<1.5
Reflectivity at 436 nm, %, Si = 100%	>120	>120	>190	>190
Reflectivity Uniformity, WiW, % 1 sigma	n/a	n/a	<1.0	<1.0
Reflectivity Uniformity, WtW, % 1 sigma	n/a	n/a	<1.0	<1.0
Stress (dynes/cm2)	<5E9T	<5E9T	<5E9T	<5E9T
Particle Contribution	<0.10 p/cm2 >0.3 um	<0.10 p/cm2 >0.3 um	<0.10 p/cm2 >0.5 um	<0.10 p/cm2 >0.5 um
Process Conditions	2000 Å thick film, 6kw, 100 sccm Ar, 300°C, throttle open at 2.7 mtorr	2000 Å thick film, 8kw, 100 sccm Ar, 300°C, throttle open at 2.7 mtorr	10000 Å thick film, power adjusted to maintain ~222 Å/sec, 100 sccm Ar, 300°C, throttle open at 2.7 mtorr	10000 Å thick film, power adjusted to maintain ~222 Å/sec, 100 sccm Ar, 300°C, throttle open at 2.7 mtorr
Document / Version #	215-11-005- 003 / 9411	215-11-005- 005 / 9411	215-11-005- 007 / 9411	215-11-005- 008 / 9411

Barrier Processes

Cathode	RMX-10 TiW	RMX-10 TiN	RMX-12 TiN
Deposition Rate (Å/sec)	>50	>20	>20
Resistivity (uohm-cm)	<75	<130	<120
Rs Uniformity, WiW, % 1 sigma	<2.5	<4.0	<2.5
Rs Uniformity, WtW, % 1 sigma	<1.0	<2.0	<1.5
Thickness Uniformity, WiW, % h-I	<5.0	<10.0	<5.0
Thickness Uniformity, WtW, % h-l	<2.0	<5.0	<5.0
Reflectivity at 436 nm, %, Si = 100%	110 to 120	45 to 55	45 to 55
Reflectivity Uniformity, WiW, % 1 sigma	n/a	n/a	n/a
Reflectivity Uniformity, WtW, % 1 sigma	n/a	n/a	n/a
Stress (dynes/cm2)	<8E9C	<2E10C	<2E10C
Particle Contribution	<0.15 p/cm2 >0.7 um	<0.15 p/cm2 >0.3 um	<0.15 p/cm2 >0.3 um
Process Conditions	1000 Å thick film, 4.0kw, 100°C, 100 sccm Ar, throttled to 5.0 mtorr	1200 Å thick film, 6kw, 300°C, 20 sccm Ar, 70 sccm N2, throttle open at 2.5 mtorr	1200Å thick film, 8kw, 300°C, 20 sccm Ar, throttle open, Sput 1 N2 = 55 sccm, Sput 2/3 N2 = 60 sccm, 10 sec sput delay
Document / Version #	215-11-005- 004 / 9411	215-11-005- 009 / 9411	215-11-005- 006 / 9411

Anti Reflective Coating Process

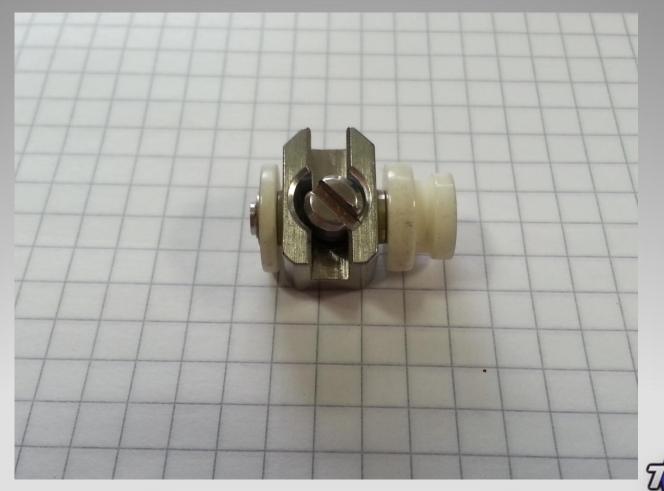
Cathode	RMX-12 TiN
Rs Uniformity (%, 1 sigma, WiW)	<2.5
Rs Uniformity (%, 1 sigma, WtW)	<4.0
Reflectivity on Oxide (at 436nm, Si=100%)	60 to 100
Reflectivity Unif on oxide (%, 1 sigma, WiW)	<6.0
Reflectivity Unif on oxide (%, 1 sigma, WtW)	<6.0
Reflectivity on 1 um Al (at 436nm, Si=100%)	20 to 35
Reflectivity Uniformity on AI (%, 1 sigma, WiW)	<2.0
Reflectivity Uniformity on AI (%,1 sigma, WtW)	<2.0
Process Conditions	500Å thick film, 8kw, 300°C, 20 sccm Argon, throttle open, Sput 1 N2 = 55 sccm, Sput 2/3 N2 = 60 sccm, 10 sec sput delay
Document / Version #	215-11-005- 006 / 9411

Eclipse for special application Backside, Thin and Fragile Substrate Wafer Handling

Backside, Thin and Fragile Substrate Wafer Handling

- Wafer handling limited to outer 5mm of wafer device side
- Edge only contact optical pre-aligner
- System hardware optimized for maximum protection of device surface
- All metal processes supported, including high stress films
- Over 35 systems in backside/UBM, over 9 years manufacturing experience
- Front & backside deposition, standard thickness to 150µm thinned wafers

COMPANY CONFIDENTIAL


Questions

- Notched or Flat wafers?
- Wafers thickness ?
- Heat during sputtering? What temperature?
- Etch before deposition? Soft or Hard Etch?
- What materials & thickness deposited?
- Where are the wafers broken ?
- How many wafers broken on 10000?
- Eclipse model & Front end type?

COMPANY CONFIDENTIAL

Stainless steel Latch with ceramic roller

COMPANY CONFIDENTIAL

Thin Film Equipment

Performance features/benefit

Performance Features/Benefits

- Excellent thermal stability
- Excellent chemical resistance
- Excellent compression set resistance
- Good response to temperature cycling effects

Typical O-ring Compression Set Performance* (70 hr data)

Material

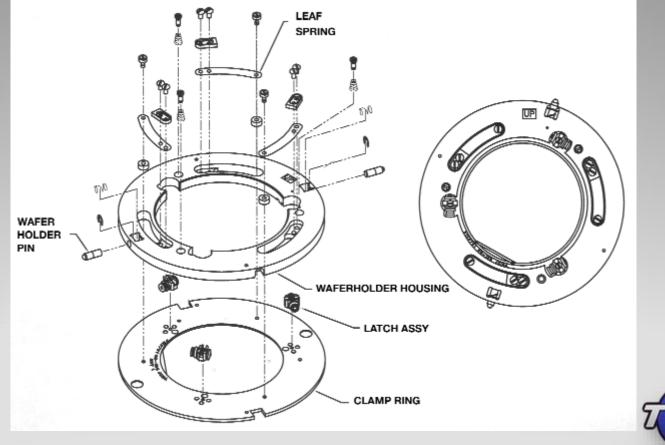
Tested,			
% C/S at	204°C	250°C	300°C
Kalrez [®] 4079	37	41	45
Competitive FFKM A2	43	100	Sample Failed
* ASTM D 395B test specimens)	and D 141	4 (AS568 🕇	(214 O-ring

Typical Physical Properties ¹	
Hardness Shore A, (pellet) ²	75
Hardness Shore M, (O-ring) ³	83
100% Modulus ⁴ , MPa	7.23
Tensile Strength at Break ⁴ , MPa	16.88
Elongation at Break ⁴ , %	150
Compression Set ⁵ , % 70 hr at 204°C, %	25
Max Continuous Service Temperature ⁶ , °C	316

¹Not to be used for specification purposes

² ASTM D 2240 (pellet test specimens)

³ ASTM D 2240 and ASTM D1414 (AS568 K214 O-ring test specimens)


Thin Film Equipment

- ⁴ ASTM D 412 (dumbbell test specimens)
- ⁵ ASTM D 395B (pellet test specimens)

⁶ DuPont Performance Elastomers proprietary

COMPANY CONFIDENTIAL

Current Wafer Holder/Clamp Ring Design

COMPANY CONFIDENTIAL

Thin Film Equipment

Hard Etch


Moderate etch rate High RF bias voltage Low particulate process chamber RF diode etch Ideally suited for applications where large areas of exposed metal and/or silicon are present

ICP Preclean Turbo Pump Option

- CTI Turbo Plus Package
- Enables the use of reactive gases
- Chamber/Bell Jar Cleaning
 - Using an ICP only plasma with Ar/O₂.
 - Removes residual polyimide from the bell jar and shielding.
 - Re-oxidizes the bell jar; Self conditioning.
 - Used with Al shielding; Self conditioning.
 - Extends bell jar lifetime

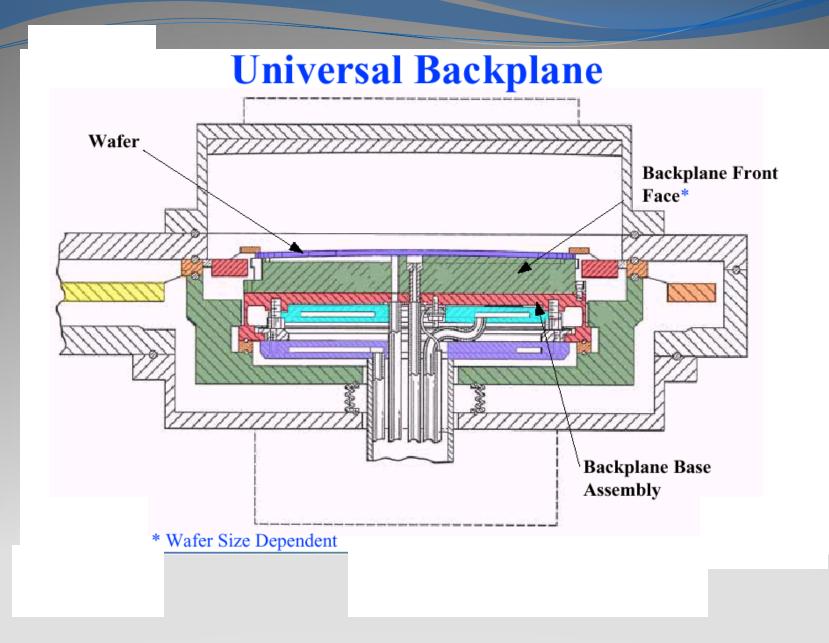
Residual Photo Resist or Polymer Removal

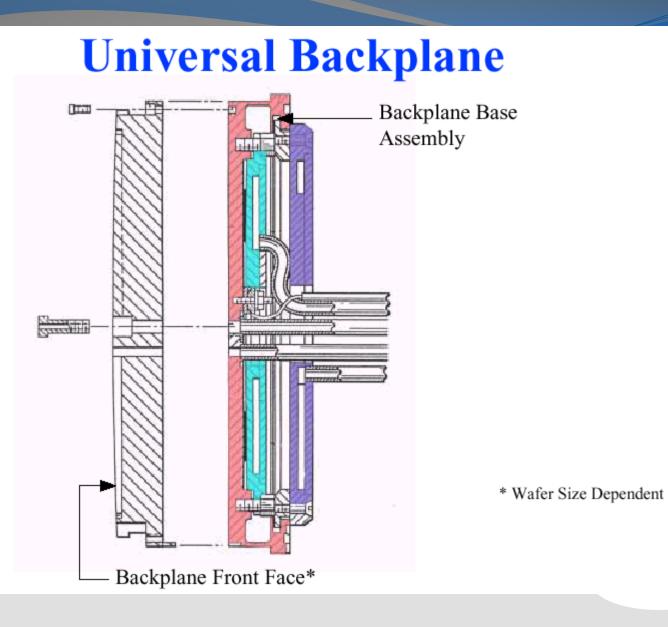
- Use an Ar/O₂ ICP plasma along with RF etch.
- Will aid in passivating polyimide surface.
- Process is "Self-Cleaning."

Contamination Removal

- Residues from final via etch (Fluorides)
- Identify chemistries that produce pump friendly reaction products.
- Design reaction mechanisms to create products with low sticking coefficients.
- Promote fluorinated molecule formation:
 - Use Inductively Coupled Plasma Only
 - Reactive Process Gas Types: Ar/H₂, NH₃, NO₂

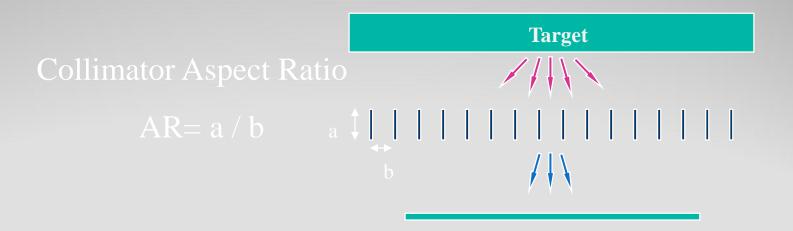
Suggested Process Sequence

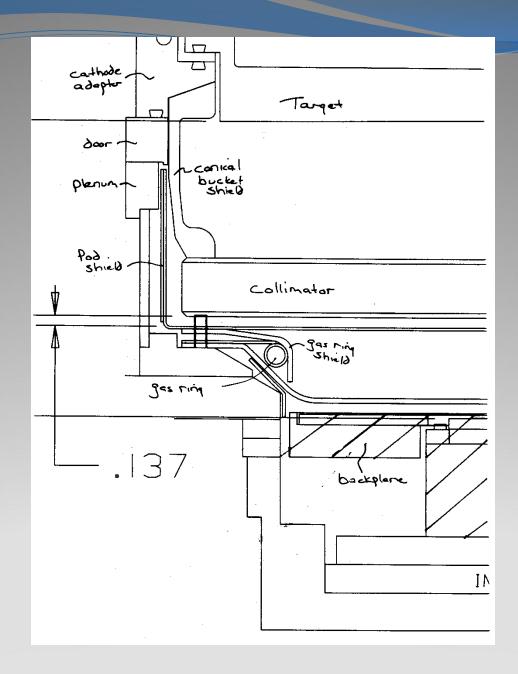

- Step 1: Use an Ar/H₂ ICP plasma to remove fluorine contamination.
- Step 2: Use Ar/O₂ Soft Etch process (ICP+RF) to clean residual photoresist.
- Step 3: Purge O_2 , using Ar only.
 - Step 4: ICP Soft Etch process; Clean the oxidized bond pad.


Turbo Pump Upgrade Summary

- Allows alternate plasma chemistries to decontaminate inbound wafers and chamber.
- Dramatically increases throughput
 - Typical contamination reduction by pumpout only: 5 min
 - With reactive preclean: < 2.5 min
- Theoretical bell jar lifetime is months, not days (as long as deposition is oxide or carbon based).
- Allows chamber to be conditioned without using multiple oxide wafers.

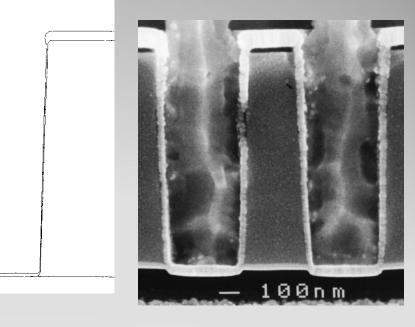
Universal Backplane


- Provides capability for reduced time in converting tools from one wafer size to another.
 - Time reduced significantly.
 - Dependent on system configuration, process operating conditions, reclamation procedures & customer specific operating procedures.
 - Available in 4", 5", 6" and 8" sizes.
 - Both contact and non-contact applications.

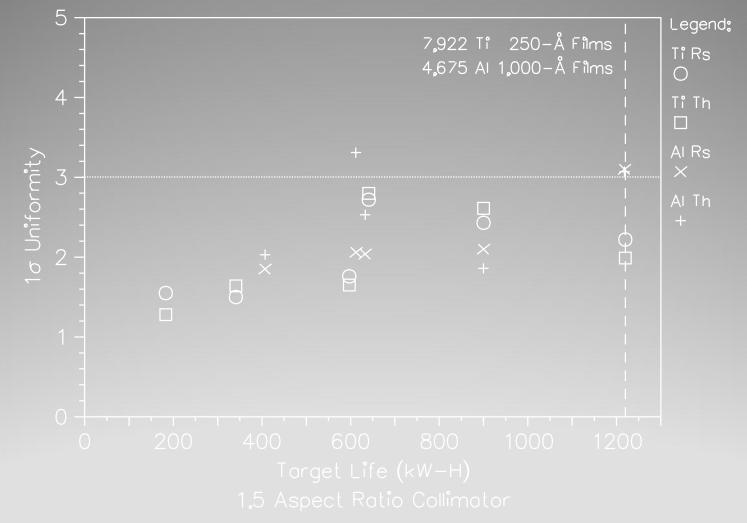


Collimated Liner Processes

Collimation improves fill by removing sputtered flux with large incident angles
ICC-12 Cathode designed for optimum film uniformity and long kit life
30 kW max. Ti process with ARO to maintain constant high throughput



Directional Deposition Solves Feature Close Off Problem


D

• Feature: 0.4 μm, 2.4 AR, 88.5° walls

- Deposition Method
 - Collimated PVD coll. Ti/TiN/Ti

MRC Collimated Film Uniformities

Eclipse Wafer Temperature

Eclipse Wafer Temperature

- Control is achieved by using backside gas
 - Heat source (bring wafer temp. up/down)
 - Heat sink (hold wafer temp. during dep.)
- Without control, deposition of 1 µm of Al
 - raises wafer temperature by 250 550 C
 - wafer is only inefficiently cooled by radiation
- Understanding of the mechanism is key for
 - successful process design on the Eclipse
 - successful process move from/to "other" equipment

Eclipse Mark IV Clamp Ring Options

Given to AMD Dresden in 2000 And MOS3 Niimegen 08/2001 TEL Mark IV Clamp Ring Discussions

- Clamp Ring Requirements
- Current Clamp Ring Design
- Alternate Clamp Ring Options
- Discussions/Conclusions

Eclipse Mark IV GaAs Applications

General GaAs Metallization

Processes

• Ohmic Metals

- Ni, W, Ge, AuGe, AuGeNi, AuZn
- Schottky Barriers
 - Ti, TiW, TiWN, Ta, TaN
- Resistor Films
 - TaN, NiCr, SiCr
- Interconnects
 - Au, Al

Currently no process experience with Ge and Ge alloys in Eclipse Systems

Eclipse Mark IV GaAs Key Advantages

Eclipse Unique Features

- Identified for the Osram OS new fab project in Burgweinting
 - General
 - Technology
 - Cost and Operation

cupse onique reatures -

General

- TEL is a world class semiconductor equipment supplier
 - Solid local service, parts and process support
- Eclipse is a mature equipment family with a large installed base (> 350 systems)
 - solid installed base in GaAs and other fragile substrate technologies
 - long process experience with a wide range of materials
 - Mark IV is fully up-to-date in hardware, automation and process technology
 - TEL committment to further development of the Eclipse family

ccipse offique realures -

Process

- Tight wafer temperature control with contact backplanes
 - still some temperature control with non-contact backplane
- Vacuum isolated UHV chambers for reactive processing
 - high gas conductance chambers for fast pumpout
- Choice of two preclean technologies (Hard Etch + ICP PC)
- Wide material flexibility with only two cathode types
 - material change requires only target and shield change
 - multipass option for material sequence flexibility
- Unique, production-proven fragile substrate handling kit
 - wafer breakage specification = 1 / 3000

Loubee endage reactines ester.

Op.

- Almost full Gold reclaiming from optimized shields
 - Gold consumption for one target life (1600 µm dep.): 861 g on produ wafers (150mm), 162 g lost, everything else reclaimed
- Equipment designed for lowest COO
 - small footprint, compact design
 - high throughput (up to 50 waf/h) serial wafer index
 - two-piece shields and quick target change kits
 - universal hardware for quick wafer size conversion (4 h)
- SECS-GEM automation and full grahical user interface
- Dedicated pre-process cassette and ARO features
 - automatic conditioning and power/time correction

Eclipse®Mark[™]IV for MOEMS

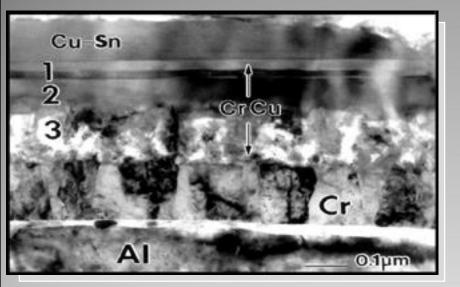
Metalization Process Sources

- MEMS and MOEMS (Optoelectronics) use production-proven process modules where possible
- **In-device interconnects**
 - mainstream DRAM and µProc processes
- **Bonding/Packaging interconnects**
 - mainstream Packaging and UBM stacks
 - often used also in-device for process simplicity
- **Resistors (Resistive Heaters)**
 - MEMS
 - Inkjet Print Head materials

Eclipse®Mark[™]IV

Al Interconnects

- Slab for 150/200mm wafers

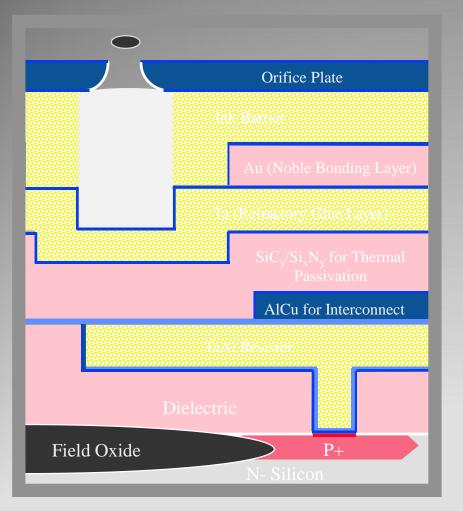

Al Alloy (Metal 3)	
Dielectric 3	W
Al Alloy (Metal 2)	にする。みてきてみ
W	Dielectric 2
Al Alloy (Metal 1/Pl	ug)
Dielectric 1	
	Pressients:
	N-Silicon P+

Schematic of 3 metal levels using Al Plug, W Plug and Slab A • <u>Example</u>:

• 200mm global wiring for 0.5 µm node

Process	Thickness	<u>Rate</u>	<u>Unif. 1</u>
SE	(200)Å	>7Å /sec	<8.0%
	300Å	>50Å/sec	<2.1%
	1 µm	>190Å/sec	<2.0%
	400Å	>20Å/sec	<3.5%

C-4 Packaging Application

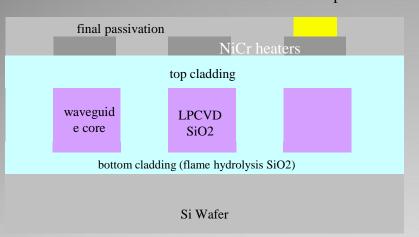

Cross-sectional SEM of typical C-4 liner stack

• <u>Example</u>:

• Typical 200mm Production Process

Process	<u>Thickness</u>	<u>Rate</u>	<u>Unif. 1σ</u>
SE	(200)Å	>7Å/sec	<8.0%
	2000Å	>25Å/sec	<3.0%
CrCu	2000Å	>30Å/sec	<3.0%
Cu	5000Å	>120Å/sec	<2.5%

Inkjet Metallization - Slab Wiring for Printer Heads



- <u>Example</u>:
- 150mm Production Process

Process	Thickness	<u>Rate</u>	<u>Unif. 1</u> σ
ICP SE	(200)Å	>7Å/sec	<8.0%
Та	3500Å	>80Å/sec	<1.5%
TaAl	800Å	>60Å/sec	<2.0%
Au	5000Å	>150Å/sec	<3.0%

Schematic of Inkjet interconnect structure

Optoelectronic resistive heater and bond pad

Au bond pad

• <u>Example</u>:

• 200mm Production Process

<u>Process</u>	<u>Thickness</u>	<u>Rate</u>	<u>Unif. 1σ</u>
NiCr	2.4µm	>90Å/sec	<2.5%
Au	5000Å	>150Å/sec	<3.0%

Other Advantages:

NiCr process optimized for low stress layer (RF bias + ...)

Specific Requirements for MOEMS

and Optoelectronics

- Interconnects on-chip and for packaging
 - large structures often require high currents
 - thicker films,
 - adhesion (stress) more critical
- Resistor films
 - large devices make within wafer uniformity more critical
- Your Requirements ?

Comparison of Metallization Processing Techniques

Evaporation Batch Sputtering Single Wafer Deposition

Evaporation

Multiple processing steps Low throughput which decreases with increasing wafer size High evaporation non-uniformity due to angular source flux (diffused emission) No substrate temperature control Difficult to reclaim precious metals, i.e. Au Manual wafer handling

Batch Sputter Systems

- Low throughput which decreases with increasing wafer size
- **High non-uniformity**
- Low vacuum results in poor film quality
 - Large percentage of film oxidized which can increase device current and decrease reliability
- No substrate temperature control

Potential target cross-contamination for reactive processing

Manual wafer handling

Modern Single Wafer PVD Systems

Cassette-to-cassette automated wafer handling Throughput is not dependent on wafer size Substrate temperature control (not all!) Ultra high vacuum (UHV) system

• Better device reliability, repeatability of films

Non-uniformity is lower than evaporator and batch systems

- WiW: < 3% 1σ; WtW: <1.5% 1σ
- Vacuum Isolated Process Chambers (not all!)
 - allow reactive sputtering

Advantages of Eclipse® Sputter System Excellent Film Stress Control

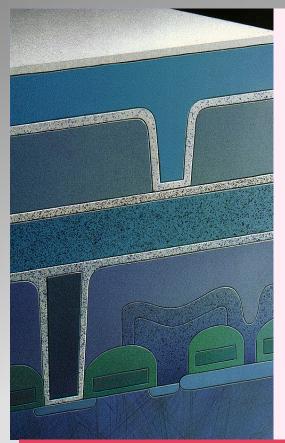
- tight wafer temperature control
- RF/DC bias capability
- wide pressure operating range

Full set of mass-production features

- operation, automation, maintenance
- High throughput: up to 50 wafers/hour
- Special Handling Features for Fragile Substrates
- 1:1 transfer of developed process into production

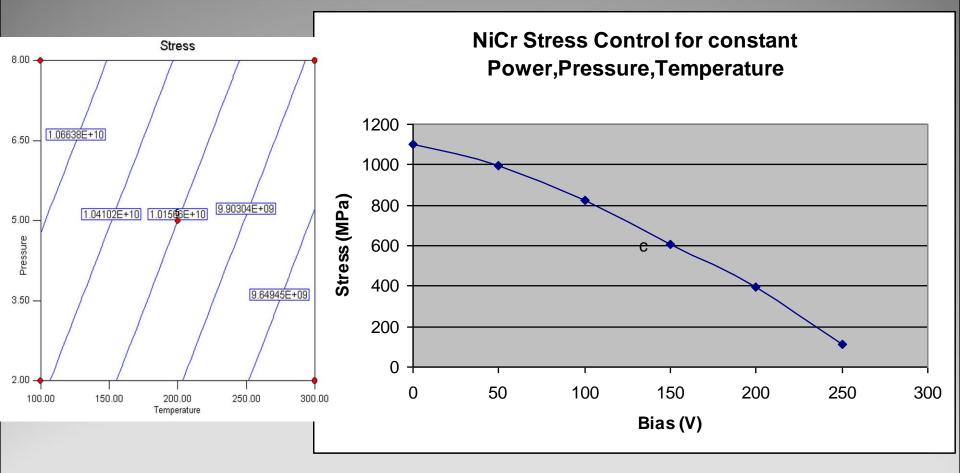
Vertical Sputtering reduces >5µm particles

TEL Experience in PVD Films


Over 40 years of accumulated experience in materials and film deposition

- process transfer from batch/research systems
- **Very Experienced Field Process Support**
 - average of 12 years in microelectronics

Unique Range of field-proven Applications Applications Laboratory in Phoenix, AZ


- process development
- feasibility studies
- demo capability

Eclipse®Mark[™]IV Integrated Applications

- Interconnects
 - Ti, TiN, Al, TiN and Hot Al for via fil
- Barriers
 - TiN, TiON, TiW, TiWN, Co-TiN, Co-Ta, Ta, TaN and CoTaN
- Silicides
 - Ti, Co, Pt, WSi and Co-Ti
- Packaging (C-4 & Backside)
 - Ti, Cr, Ni, TiW, NiV, NiVN, CrCu, Cu, Au
- GaAs and Discretes
 - Cr, Ti, TiW, TiWN, Al, Pt, Au, Ag, Ta, Ni
- Resistors (Inkjet and Optoelectronics
 - SiCr, NiCr, Ta, TaN, TaAl
- Conductors (Inkjet and Optoelectronics)
 - TaAl, Ta, Al, Au, Cu

Example: Resistor Stress Control

ICP Preclean

Specifications

	150mm	150mm 200mm	
Bell Jar Material	Quartz	Quartz	
Etch Rate (Å/min)	>100, <600	>100, <600	
Etch Uniformity, WiW, % 1σ	<10.0%	<10.0%	
Rs Uniformity, WtW, %1σ	<2.5	<2.5	
Argon (sccm)	25	25	
Temperature (°C)	300	300	
ICP Power/Bias	1000W / 100V	1000W / 100V	
Chamber Pressure (mTorr)	0.8	0.8	
Plasma Power Source	ICP	ICP	

Preclean Process Issues

- optimize etch removal for optimal throughput and bell jar life
- SiC etching compromises process performance and process kit life
- efficient bell jar conditioning recipes extend kit life and avoid RF errors
- new particle spec for SiC etching in development
- setup-specific BKMs (Best Known Methods) available

Ion Bombardment

- Intense ion bombardment can reverse the effect of high gas pressure, i.e., zone 1 becomes zone T, i.e., more dense.
 - Eroding surface roughness i.e., reducing shadowing effects.
 - Creating new nucleation sites for arriving atoms.
 - The ion bombardment for aforementioned effect is very large ~30-36% eliminates shadowing.
 - Differential bombardment due to topography shadowing
 - At low deposition temperatures high energy ions tend to become trapped in the growing film.
 - Low energy ion are effective in removing impurities adsorbed on the surface and the growing film is cleaner.

Comparison of PVD Technologies

Comparison of Metallization Processing Techniques

Evaporation Batch Sputtering Single Wafer Sputter Deposition

Evaporation

still widely used **Multiple processing steps** Low throughput which decreases with increasing wafer size High evaporation non-uniformity due to angular source flux (diffused emission) No substrate temperature control **Difficult to fully reclaim precious metals** Manual wafer handling

Batch Sputter Systems

- Low throughput which decreases with increasing wafer size
- **High non-uniformity**
- Low vacuum results in poor film quality
 - Large percentage of film oxidized which can increase device current and decrease reliability

No substrate temperature control Potential target cross-contamination Manual wafer handling Difficult to fully reclaim precious metals

Advantages of Eclipse® Sputter System

Cassette-to-cassette automated wafer handling Throughput up to 50 waf/h, independent of wafer size Substrate temperature control Ultra high vacuum (UHV) system

• Better device reliability

Non-uniformity is lower than evaporator and batch systems

• WiW: < 3% 1σ; WtW: <1.5% 1σ

Less than 2% loss of precious metals

Precious Metal Economy

Gold Reclaim Data (real life) from Customer X

Configuration: Mark II, 2.5mm EE clamp ring, funnel (reclaim) shield 150mm wafers, 0.6µm Au/wafer, full thickness target (=2667 wafers/target)

Au on new target (RMX-10)	8800 g	g	100%
Au remaining on spent target	4889 g	g	55.60%
= Au sputtered	3911 g	g	44.40%
Au reclaimed from shields	2888 g	g	32.80%
= Gold consumed	1023 g	g	11.60%
Gold on product wafers	861 g	g	9.80%
= Gold lost	162 g	g	1.80%

MICROTEST – ZA La Garrigue du Rameyron 84830 Sérignan – FRANCE Tel : +33(0)4 90 40 60 90 Email : microtest@microtest-semi.com Site web : <u>www.microtest-semi.com</u>